Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species
نویسندگان
چکیده
Mobile genetic elements (MGE) such as plasmids and transposons mobilise genes within and between species, playing a crucial role in bacterial evolution via horizontal gene transfer (HGT). Currently, we lack data on variation in MGE dynamics across bacterial host species. We tracked the dynamics of a large conjugative plasmid, pQBR103, and its Tn5042 mercury resistance transposon, in five diverse Pseudomonas species in environments with and without mercury selection. Plasmid fitness effects and stability varied extensively between host species and environments, as did the propensity for chromosomal capture of the Tn5042 mercury resistance transposon associated with loss of the plasmid. Whereas Pseudomonas fluorescens and Pseudomonas savastanoi stably maintained the plasmid in both environments, the plasmid was highly unstable in Pseudomonas aeruginosa and Pseudomonas putida, where plasmid-free genotypes with Tn5042 captured to the chromosome invaded to higher frequency under mercury selection. These data confirm that plasmid stability is dependent upon the specific genetic interaction of the plasmid and host chromosome rather than being a property of plasmids alone, and moreover imply that MGE dynamics in diverse natural communities are likely to be complex and driven by a subset of species capable of stably maintaining plasmids that would then act as hubs of HGT.
منابع مشابه
Environmentally co‐occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context‐dependent fitness effects
Plasmids are important mobile elements that can facilitate genetic exchange and local adaptation within microbial communities. We compared the sequences of four co-occurring pQBR family environmental mercury resistance plasmids and measured their effects on competitive fitness of a Pseudomonas fluorescens SBW25 host, which was isolated at the same field site. Fitness effects of carriage differe...
متن کاملEpistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas
Antibiotic resistance often evolves by mutations at conserved sites in essential genes, resulting in parallel molecular evolution between divergent bacterial strains and species. Whether these resistance mutations are having parallel effects on fitness across bacterial taxa, however, is unclear. This is an important point to address, because the fitness effects of resistance mutations play a ke...
متن کاملThe rulB gene of plasmid pWW0 is a hotspot for the site-specific insertion of integron-like elements found in the chromosomes of environmental Pseudomonas fluorescens group bacteria
The rulAB operon of Pseudomonas spp. confers fitness traits on the host and has been suggested to be a hotspot for insertion of mobile elements that carry avirulence genes. Here, for the first time, we show that rulB on plasmid pWW0 is a hotspot for the active site-specific integration of related integron-like elements (ILEs) found in six environmental pseudomonads (strains FH1-FH6). Integratio...
متن کاملPlasmid stability is enhanced by higher-frequency pulses of positive selection
Plasmids accelerate bacterial adaptation by sharing ecologically important traits between lineages. However, explaining plasmid stability in bacterial populations is challenging owing to their associated costs. Previous theoretical and experimental studies suggest that pulsed positive selection may explain plasmid stability by favouring gene mobility and promoting compensatory evolution to amel...
متن کاملInteractions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa
Horizontal gene transfer (HGT) plays a key role in bacterial evolution, especially with respect to antibiotic resistance. Fitness costs associated with mobile genetic elements (MGEs) are thought to constrain HGT, but our understanding of these costs remains fragmentary, making it difficult to predict the success of HGT events. Here we use the interaction between P. aeruginosa and a costly plasm...
متن کامل